Clarithromycin

Clarithromycin exerts its antibacterial action by binding to the 50S ribosomal subunit of susceptible microorganisms resulting in inhibition of protein synthesis.
Clarithromycin is active in vitro against a variety of aerobic and anaerobic gram-positive and gram-negative microorganisms as well as most Mycobacterium avium complex (MAC) microorganisms.
Additionally, the 14-OH clarithromycin metabolite also has clinically significant antimicrobial activity. The 14-OH clarithromycin is twice as active against Haemophilus influenzae microorganisms as the parent compound. However, for Mycobacterium avium complex (MAC) isolates the 14-OH metabolite is 4 to 7 times less active than clarithromycin. The clinical significance of this activity against Mycobacterium avium complex is unknown.
Aerobic Gram-positive microorganisms
Staphylococcus aureus
Streptococcus pneumoniae
Streptococcus pyogenes
Aerobic Gram-negative microorganisms
Haemophilus influenzae
Haemophilus parainfluenzae
Moraxella catarrhalis
Other microorganisms
Mycoplasma pneumoniae
Chlamydia pneumoniae (TWAR)
Mycobacteria
Mycobacterium avium complex (MAC) consisting of:
Mycobacterium avium
Mycobacterium intracellulare
Beta-lactamase production should have no effect on clarithromycin activity.
NOTE: Most strains of methicillin-resistant and oxacillin-resistant staphylococci are resistant to clarithromycin.

Helicobacter
Helicobacter pylori
Aerobic Gram-positive microorganisms
Streptococcus agalactiae
Streptococci (Groups C, F, G)
Viridans group streptococci
Aerobic Gram-negative microorganisms
Bordetella pertussis
Legionella pneumophila
Pasteurella multocida
Anaerobic Gram-positive microorganisms
Clostridium perfringens
Peptococcus niger
Propionibacterium acnes
Anaerobic Gram-negative microorganisms
Prevotella melaninogenica (formerly Bacteriodes melaninogenicus )

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου